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J. Phys. A :  Math. Gen. 14 (1981) L129-L132. Printed in Great Britain 

LETTER TO THE EDITOR 

Estimates of the A2-term in the interaction of matter with 
radiation 

Peter Pfeifert 
Laboratory of Physical Chemistry, ETH Zurich, CH-8092 Zurich, Switzerland 

Received 2 February 1981 

Abstract. If the energy of a molecule coupled to the quantised radiation field is made an 
extremum with respect to products of arbitrary molecular states and coherent field states, 
then there results a nonlinear Schrodinger equation for the molecule from which bounds for 
the energy contribution of the Az-term are derived. It is shown in what sense this 
contribution can be expected to be small under rather general circumstances. 

Recent non-perturbative investigations of both stationary and thermal equilibrium 
states of matter interacting with radiation, mostly restricted to finitely many field 
modes, have led to an extensive debate over justification, if any, of the neglect of the 
so-called A’-term in the fundamental Hamiltonian (for the case of two-level molecules, 
see e.g. Orszag (1977), Knight et a1 (1978), van Hemmen (1980); for treatments 
without two-level truncation, but with the electric dipole approximation, see Woolley 
(1976), Bialynicki-Birula and Rzaiewski (1979)). Arguments for this simplification 
range from perturbation theory to selection rules to canonical transformations. 

To state the problem in full generality, consider (all in au) the molecular Hamil- 
tonian 

N N 

u = l  U,, = 1 
U < &  

h = c (2mu)-11pu12+ c z”z , l~u-q&l - l  

with masses mu, charges z,, position and momentum operators qu and pu  (v = 1, . . . , N ) .  
In the Coulomb gauge, the Hamiltonian for the molecule coupled to the transverse part 
of the electromagnetic field (quantised in a cube of length L) reads 

N 
= : Ipu 0 1 - z,A‘L’(qu)/’ : 

u = l  

N m 
(L) * + 1 zuz,Iqu-q&j-lO1+1O 1 clkn I b n b n  

U,& = 1 n = l  
U < &  

N 
= H’(L)+ (2mU)-’ : Iz,A‘L’(qu)12 :, 

u = l  

m 

A‘L’(qu) = ALL) [exp (ik?’ - q u ) O b n  +exp(-ikLL’ * qu)Ob:] ,  
n = l  
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and acts formally in L2(R3N)@%. Here, Xis  the (‘complete’) infinite tensor product of 
the one-photon Hilbert space; : : means normal order of the photon creation and 
annihilation operators b:, 6 ,  ( n  = 1 , 2 , .  . .); c is the velocity of light; and 
{(A F), kif')}?= is an enumeration of 

{((CL’ In I)-*”e,,,!, ( 2  . r r / ~ ) n  Ez3\(0) 
f=1 ,2  

where the polarisation vectors e,,,l E R3 satisfy e,,,l e,,,!, = Gl,l,and en,l n = 0 (1, I’ = 1, 2; 
n E Z3\{O}). So C A ‘ ~ ) (  ) is the (transverse) vector potential. (Note that no two-level, 
dipole, or finite-number-of-modes approximation is invoked. Neither is the Coulomb 
potential in h essential for what follows.) The question then is under what conditions the 
difference is negligible. Of special interest is the infrared limit L + 00, which 
is often taken in conjunction with N + 00 such that NIL3 = constant. 

This Letter substantiates some recent announcements (Pfeifer 1980b, Davis 1980) 
by developing an answer for a Hartree-type ansatz for the eigenstates of H ( L ) ,  for L + 03 

and fixed N. Focus on such molecule@field factorisation seems justified both on 
mathematical and conceptual grounds (Spohn 1980, Pfeifer 1980a, Primas 1981). 

We need some preparations. 

Definitions. For p E [l, 001, let Lp(R3) = Lp(R3) 0Lp(Iw3)0Lp(R3).  In L2(R3), define 
the unitary Fourier transform F, the self-adjoint Laplacian A, and the orthogonal 
projector T onto the transverse functions, by 

w“) = k x ((FfM) x k)lkl-2, 

(k E R3) for all suitable L2(R3). For q E 901) (9( ) denotes the domain), define the 
electrical current density j ,  and the even part of the mass-weighted charge density, w,, 
by 

N 

V = l  
j,(r) = (VI; c (zy/m.)[a(r -qy)py -+pya(r --qv)1Q), 

(r E R3); W, is the self-adjoint operator of multiplication (in L2(R3)) by w,. Finally, for 
self-adjoint operators A and B we write 0 S A  S B if both are non-negative and satisfy 
9(B1”) c 9(A112) with IIA1/’fll~ llB1/2fll for all f~ 9(B1”). 

Proposition 1. If Q ~ 9 ( h ) ,  then:], ~ L ” ( R ~ ) f o r p  ~ [ l ,  2];], E~((-A)-’/’); w, cLp(R3)  
for p E [ l ,  31. 

Proof. This follows from 9 ( h )  = 9(Zf=)”=, I P , ~ ~ ) ,  Holder estimates, standard Sobolev 
embeddings and simple fall-off properties of the Fourier transform. 
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where 1 )  / I p  and 11 11,” are the LP(R3)-norm and weak LP(R3)-‘norm’. (Note that TK, = 
K,T and u, < CO.) Then 

K, = K z ,  9(K,)  = 9@), K,’ exists, 

0 < KO< K, (1 + U,)Ko,  o < ( l + ~ , ) - ~ K ~ ’  < K i l  s K i * .  

Proof. Since w, E L2(R3) (proposition l), K, = K z  and 9((K,) = 9 ( A )  by the Kato- 
Rellich theorem as usual. Invertibility of K, follows from 0 S KO S K, and that of KO. 
Use uncertainty inequalities (Faris 1978) for K, s (1 +u,)Ko. See Kat0 (1966) for 
inversion of these operator inequalities. 

These preliminaries show that all expressions in the main results are well defined. 

Theorem 1. (a) For L + CO, the energy (cp  @@lH‘L’(cp @a)) is stationary with respect to 
normal i sedcpEB(h)anda=la l ,a2 , .  , . ) ~ E , s u c h  that bnla1,a2,. . . ) = a , ( a 1 , a ~ , .  . .) 
( n  = 1,2 ,  . . . ; a l ,  a2, . . . E C),  if and only if cp is a stationarypoint of the functional given 
by 

E ( $ )  = (4w) - kllKe1/2TjlL112 (+E 9 ( h ) ;  lltclll= 1) 

(and al, a2, . . . are chosen in a prescribed, (cp, L)-dependent manner); in which case 

lim (cpO@IH‘L’(cp@@)) =E(cp). 
L+oO 

(b) Assertion (a) remains true if and E(  ) are replaced by H’(L)  and E’( ) where 

E’(4) = (sl,IIsl,)-kIIKi1”Tj~I12 (sl, E 9 ( h ) ;  11441- 1). 

Proof. The energy depends quadratically on the coherent-state arguments a l ,  a2,. . . , 
For fixed cp and L + CO, the ensuing system of coupled linear equations for a 1, a 2 ,  . . . can 
be solved in terms of the solution of the limiting integral equation, which leads to the 
appearance of K i l .  Insertion in the energy expression yields the stated result. 

Thus, within the scope of theorem 1, we can estimate the effective size of the A’-term 
from the following corollary of proposition 2. 

Theorem 2. For (normalised) cp E B(h) ,  

For example, for low-lying stationary points cp of E(  ) one expects that the density w, is 
bounded with llwcllm not exceeding a few au for moderate charges z ,  (high peaks in cp for 
large masses m, will presumably be compensated by the weights m i 1  in w,). So even 
the very crude estimate 

e 10-~(n0 of electr~ns)~/~IIw,II~’~ 
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indicates that, at least for small molecules, the contribution of the A*-term is at most a 
few percent of the radiative correction E’(cp)-(cplhp). In any case, the latter is never 
smaller than the A2-contribution. 
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